MATH 465 Fall 2024 Self Assessment

Calculus

Concepts: continuous, differentiable, gradient, chain rule, Taylor series.

- 1. Consider $f : \mathbb{R}^d \to \mathbb{R}, x \mapsto \frac{1}{2}x^{\top}Ax + b^{\top}x + c$, where $A \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^d, c \in \mathbb{R}$. Is f continuous, differentiable? If f is differentiable, what is the gradient of f?
- 2. Consider $f : \mathbb{R}^d \to \mathbb{R}, x \mapsto \frac{1}{2} ||Ax + b||_2^2$, where $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$. Is f continuous, differentiable? If f is differentiable, what is the gradient of f?
- 3. Consider differentiable $f : \mathbb{R}^m \to \mathbb{R}$ and define $g : \mathbb{R}^d \to \mathbb{R}, x \mapsto f(Ax+b)$, where $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$, compute ∇g .
- 4. If $f : \mathbb{R} \to \mathbb{R}$ is smooth, what is the Taylor series of f at a?
- 5. If $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable, what is the necessary condition for x^* to be the minimizer/maximizer of f?

Linear Algebra

Concepts: rank, trace, orthonomality, positivity, vector norm, Frobenius norm, spectral norm, eigenvalue decomposition, singular value decomposition (optional).

- 1. What is the tightest upper bound on $|x^{\top}y|$ in terms of Euclidean norms of x, y?
- 2. Let matrices A, B have the same dimensions. Show that the trace of the matrix AB^{\top} is the same as $\sum_{i,j} A_{i,j}B_{i,j}$.
- 3. Why is it that $A^{\top}A + I$ is invertible for any matrix A? (I is the identity matrix.)
- 4. Does any matrix have an eigenvalue decomposition? Does any symmetric matrix have an eigenvalue decomposition? Is eigenvalue decomposition unique?
- 5. If $x^{\top}A^{\top}Ax = 0$, what can we say about x?

- 6. If U is an orthogonal matrix, argue that $||Ux||_2^2 = ||x||_2^2$.
- 7. Argue that $||A||_F = tr(A^{\top}A)$ and $||A||_F \le ||A||_2$.
- 8. If A, B are matrices whose columns are respectively $\{a_i\}_i, \{b_i\}_i$ show that $AB^{\top} = \sum_i a_i b_i^{\top}$.
- 9. Express $||aa^{\top}||_F^2$ in terms of the Euclidean length of a. (below are optional.)
- 10. Express $||A^{-1}||_2$ in terms of the singular values of A.
- 11. If $A = USV^{\top}$ is the full SVD of A, what is the full SVDs of $A^{\top}A, AA^{\top}$? What is the eigenvalue decomposition of $A^{\top}A, AA^{\top}$.
- 12. If $A = USV^{\top}$ is the full SVD of A, how can you read off the rank and nullity of A from just S?
- 13. If A is symmetric, how are its eigenvalue decomposition and singular value decomposition related?

Probability

Concepts: independence, variance, expectation.

- 1. Let p(x, y) be the joint pdf of random variables X, Y, give the expression of $p_1(x), p_2(y)$ marginal pdf of X, Y.
- 2. If X, Y are independent, how is p related to p_1, p_2 ?
- 3. If X, Y are independent, does $\mathbb{E}[f(x)g(y)] = \mathbb{E}[f(x)]\mathbb{E}[g(y)]$ holds for arbitrary functions?
- 4. What is $\mathbb{P}\{\mathcal{E}_1 \cup \mathcal{E}_2\}$ if the events $\mathcal{E}_1, \mathcal{E}_2$ are independent?
- 5. If X, Y, Z are independent, what can we say about $\mathbb{E}[X + Y + Z]$? What is they are not independent?
- 6. Give a sufficient condition for when the variance of X + Y equals the sum of the variances of X and Y. Provide a proof of your claim.
- 7. Let X follows a standard Gaussian distribution in \mathbb{R}^d , U be an orthogonal matrix, show that UX follows the same distribution as X.
- 8. If X_1, \dots, X_n are independent identically distributed samples drawn from a distribution with finite variance, what can we say about the distribution of their average $\frac{1}{n} \sum_{i=1}^{n} X_i$?